Expressiveness of Deep Learning

نویسنده

  • Alexander Bentkamp
چکیده

Deep learning has had a profound impact on computer science in recent years, with applications to search engines, image recognition and language processing, bioinformatics, and more. Recently, Cohen et al. [2] provided theoretical evidence for the superiority of deep learning over shallow learning. For my master’s thesis [1], I formalized their mathematical proof using Isabelle/HOL. This formalization simplifies and generalizes the original proof, while working around the limitations of the Isabelle type system. To support the formalization, I developed reusable libraries of formalized mathematics, including results about the matrix rank, the Lebesgue measure, and multivariate polynomials, as well as a library for tensor analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Collaborative Autoencoder for Recommender Systems: A Unified Framework for Explicit and Implicit Feedback

In recent years, deep neural networks have yielded state-of-the-art performance on several tasks. Although some recent works have focused on combining deep learning with recommendation, we highlight three issues of existing works. First, most works perform deep content feature learning and resort to matrix factorization, which cannot effectively model the highly complex user-item interaction fu...

متن کامل

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Conventional wisdom in deep learning states that increasing depth improves expressiveness but complicates optimization. This paper suggests that, sometimes, increasing depth can speed up optimization. The effect of depth on optimization is decoupled from expressiveness by focusing on settings where additional layers amount to overparameterization – linear neural networks, a wellstudied model. T...

متن کامل

Why & When Deep Learning Works: Looking Inside Deep Learnings

In recent years, Deep Learning has emerged as the leading technology for accomplishing broad range of artificial intelligence tasks (LeCun et al. (2015); Goodfellow et al. (2016)). Deep learning is the state-of-the-art approach across many domains, including object recognition and identification, text understating and translation, question answering, and more. In addition, it is expected to pla...

متن کامل

An Isabelle Formalization of the Expressiveness of Deep Learning

Deep learning has had a profound impact on computer science in recent years, with applications to search engines, image recognition and language processing, bioinformatics, and more. Recently, Cohen et al. provided theoretical evidence for the superiority of deep learning over shallow learning. I formalized their mathematical proof using the proof assistant Isabelle/HOL. This formalization simp...

متن کامل

A Formal Proof of the Expressiveness of Deep Learning

Deep learning has had a profound impact on computer science in recent years, with applications to image recognition, language processing, bioinformatics, and more. Recently, Cohen et al. provided theoretical evidence for the superiority of deep learning over shallow learning. We formalized their mathematical proof using Isabelle/HOL. The Isabelle development simplifies and generalizes the origi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archive of Formal Proofs

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016